Hydrogenation-Quench-TGT - Integrated Simulation

Hydrogenation-Quench-TGT - Integrated Simulation

Instructions



  1. This article contains a series of steps to feed data to a ProTreat flowsheet, run the simulation, interpret the results
  2. A user can either follow the series of steps mentioned in this article to build the flowsheet, or download the ProTreat file attached to this article, review the inputs and run the simulation  

Simulation Set Up



Objective

  1. Target is  < 100 ppmv HS in the stream to incinerator

Flowsheet


Inputs

  1. Components:  Carbon dioxide, Hydrogen Sulphide, MDEA, Sulphur dioxide, Sulphur - S, Sulphur - S, Sulphur - S₈, Argon, Ammonia, Sodium ion, Methane, Ethane, Propane, n-Butane, n-Pentane, n-Hexane, Hydrogen, Carbonyl sulphide, Carbonyl disulphide, Carbon monoxide, Nitrogen, Oxygen, Nitric oxide, Nitrogen dioxide, Water

Fuel gas (FG-1) 

  1. Stream flow rate>> 13.35 lbmol/hr
  2. Temperature>>80°F
  3. Pressure>>50 psia
  4. Component composition>> (Methane: 100 mol%)

Burner-2

  1. Performance
    1. Thermal
      1. Heat Input(+)/Removal(-)>>0 Btu/hr
    2. Pressure
      1. Pressure drop>>0.2 psi
  2. Thermo/Calcs
    1. Thermodynamic package>>sulphur
    2. Convergence tolerance>>0.0001
    3. Damping factor>>1
    4. Apply damping factor to first>>1 loop cycles
    5. Iterations>>100
    6. Damped iterations>>0
  3. Air Supply
    1. Source of air
      1. Create air stream(Internal air stream ID number>>62)
        1. Temperature>>90°F
        2. Pressure>>11.1 psig
      2. Water Specification
        1. %Saturation>>50
      3. Flow specification
        1. Air to fuel ratio>>7.5 mol/mol fuel
  4. Tempering steam
    1. Source of tempering steam
      1. Create tempering steam stream(Internal steam stream ID 63)
      2. Thermal specification 
        1. Saturated steam pressure>>50 psig
      3. Flow specification
        1. Steam to fuel ratio>>1 mass/mass fuel
  5. Optional Reporting
    1. Select all except "estimate pollutant emissions"
  6. Retain all other default settings in the block

Make up-H₂

  1. Stream flow rate>>15.48 lbmol/hr
  2. Temperature>>80°F
  3. Pressure>>50 psig
  4. Component composition>>(H₂: 100 mol%)

Tail gas

  1. Stream flow rate>>1527.3 lbmol/hr
  2. Temperature>>280°F
  3. Pressure>>20.4 psia
  4. Component composition: (Water>> 37.4, Carbon dioxide>> 0.55, Hydrogen sulphide>> 0.47, Sulphur dioxide>> 0.23, Sulphur-S₈>> 0.01, Hydrogen>> 1.09, Carbon monoxide>> 0.172, Nitrogen>> 60, All in mol%)

RCG Mix-1

  1. This mixer is used to mix the streams from burner, Makeup H₂, Tail gas
  2. The outlet of the mixer block is connected to hydrogenation reactor

Hydrogenation Reactor

  1. Reactor data>> Pressure>> Pressure drop: 0.4 psi (Specify by overall block)
  2. Section data>>Basic data>>Type>>Co-Mo-First Gen Catalyst, Aging>> 1; Poisoning>> 0;
    1. Size
      1. Bed size>>Average space velocity>>2000 GHSV
    2. Loaded density/void fraction>>use default
    3. Numerical integration>>Number of segments>>10
      1. Segment distribution>>default
  3. Retain all other default settings in the block

Cooler-1

  1. Cooler >>Duty>> Outlet Temperature>> 350°F
  2. Pressure>>pressure drop>>0.4 psi
  3. Thermo>>Thermodynamic package>>sulphur

Component splitter

  1. Split 100% of all the sulphur to stream-36, to avoid entering into the quench water system
  2. Thermo model for the stream-35 leaving component splitter is changed to OGT Gas Treating using Thermo transfer-2

Quench column

  1. Configuration
    1. Section-1>> Nutter Ring
    2. Data
      1. Packing Depth>>10 feet
      2. Packing material>> metal
      3. Packing size>> No.2
      4. Segmentation
        1. Select default numerical segments in segmentation
      5. Methods>>
        1. Hydraulics>>Sulzer proprietary
        2. Mass Transfer>>Billet–Schultes
    3. Size
      1. calculated>>60% capacity
    4. pressure
      1. Specify Pressure>>2.8 psig at 0 feet depth
      2. Select calculate pressure drop
    5. Connect streams appropriately to column based on the flowsheet
    6. Connect feed stream below the bottom of packing
  2. Models
    1. Thermodynamic package>>OGT Gas Treating
    2. Reaction kinetic model for CO and COS
      1. ProTreat default(most columns)
  3. Streams
    1. Feed & Draw streams
      1. streams>>33>>connect>>bottom of packing
      2. streams>>28>>connect>>top of packing
    2. Top vapor stream>>Rate Stream
    3. Bottom liquid stream>>Rate stream 
  4. Initialization
    1. Initialize from last run(if available)
  5. Report
    1. Default settings or desired component results
  6. Convergence
    1. Tolerance>>0.001
    2. Iterations>>50
    3. Damping factor>>1.0
    4. Damped Iterations>>0
    5. Apply to first "0" loop cycles

QW Pump

  1. Thermodynamic package>> OGT Gas Treating
  2. Characteristics
    1. Pressure Rise >>70 psi
    2. Efficiency>>75%

Divider-1

  1. Mode>>flow
  2. Outlets>>750 USGPM to stream number 25
  3. Pressure drop>>0 psi
  4. Thermodynamic package>>OGT Gas Treating

QW Cooler

  1. Duty
    1. Outlet Temperature>>95°F
  2. Pressure
    1. pressure drop>>10 psi
  3. Thermo
    1. Thermodynamic package>> OGT Gas Treating

Control-2

  1. Stream Flow Rate>> 750 USGPM
  2. Composition>> Sodium Ion – 1 ppmw
  3. Select method for calculating make up as “Control Block In/ Out Streams”.

Recycle-3

  1. Recycle flow rate>> 750 USGPM
  2. Temperature>> 95°F
  3. Pressure>> 60 psig
  4. Component composition: (CO₂>> 0.1 mol%, MDEA>> 40 wt%, H₂S>> 0.1 mol%, Sodium Ion-500 ppmw)
  5. Select water specification as “is remainder (solvent streams only)”

TGU Absorber

  1. Configuration
    1. Data
      1. Tray Type>> Generic valve trays 
      2. Number of Trays>> 12
      3. Tray Spacing: 2 feet
      4. Number of passes>> 1
      5. Weir height>>2.5 inch
      6. Foam Derating Factor>>0.85 
      7. Vapor flood & Downcomer Flood>> 70%
      8. Pressure>> Specify pressure at below bottom>>2.8 psig
      9. Select calculate pressure drop
    2. Model
      1. Thermodynamic package>>OGT Gas Treating
      2. Reaction kinetic model for CO and COS
    3. Streams
      1. Feed & Draw streams
      2. streams>>33>>connect>>bottom of packing
      3. streams>>28>>connect>>top of packing
      4. Top vapor stream>>Rate Stream
      5. Bottom liquid stream>>Rate stream 
    4. Initialization
      1. Initialize from last run(if available)
    5. Report
      1. Default settings or desired component results
    6. Convergence
      1. Tolerance>>0.001
      2. Iterations>>50
      3. Damping factor>>1.0
      4. Damped Iterations>>0
      5. Apply to first "0" loop cycles
  2. Connect streams appropriately to absorber based on the flowsheet
  3. Connect feed stream below bottom tray

Rich Pump

  1. Pump>>Outlet Pressure>>82 psig
  2. Efficiency>> 75%

Lean/Rich

  1. HeatX>>Configuration>>Flow Type>>Countercurrent Flow
    1. Shell Side Outlet>>Stream 18
  2. Heat Transfer>> Thermal Spec>>Tube outlet Temperature>>241°F
    1. Apply LMTD Correction Factor>> Let  ProTreat Calculate
  3. Pressure>>Shell Side Pressure Drop>>5 in. WC
    1. Tube Side Pressure Drop>>5 psi

Regenerator Inputs

  1. Configuration
    1. Select has reboiler and has condenser, and has reflux to column (return is 100%)
    2. Data
      1. Tray Type>> Generic valve trays 
      2. Number of Trays>> 32
      3. Tray Spacing>> 2 feet
      4. Number of passes>> 1
      5. Weir height>> 2.5 inch
      6. Foam Derating Factor>> 0.85 
    3. Size
      1. Diameter calculated>>Vapor flood & Downcomer Flood>> 70%
    4. Pressure
      1. Pressure>>Specify pressure at below bottom tray>> 19 psig
      2. Select calculate pressure drop
      3. Connect streams appropriately to absorber based on the flowsheet
  2. Models
    1. Thermodynamic package
      1. OGT Gas Treating
    2. Reaction kinetic model for CO and COS 
      1. Pro Treat default(most columns)
  3. Streams
    1. Connect feed stream above the tray no.5 
  4. Condenser/Reboiler
    1. Condenser>>Temperature>>115°F
    2. Condenser>> Pressure Drop>> 1 psi
    3. Reboiler>>  Vapor return line pressure drop>> 0 psi
    4. Reboiler Steam Flow>>20000 lb/hr
    5. Pressure>>50 psig
    6. Reboiler>>vapor return line pressure drop>>0 psi
  5. Initialization
    1. Initialize from last run(if available)
  6. Report
    1. Default settings or desired component results
  7. Convergence
    1. Tolerance>>0.001
    2. Iterations>>50
    3. Damping factor>>1.0
    4. Damped Iterations>>0
    5. Apply to first "0" loop cycles

Lean Pump

  1. Pump>> Pressure Rise>>75 psi
  2. Efficiency>>75%

Lean Cooler

  1. Cooler>> Duty>> Outlet Temperature>> 95°F

Control-1

  1. Stream Flow rate>> 343 USGPM
  2. Composition>>MDEA - 40 wt.% 
  3. Select method for calculating make up as “Control Block In/ Out Streams”.

Recycle-1

  1. Recycle flow rate>> 343 USGPM
  2. Temperature>>95°F
  3. Pressure>>50 psig
  4. Component composition: (CO₂>> 0.001 Loading, MDEA>> 34 wt%, H₂S>> 0.0001 Loading)
  5. Select water specification as “is remainder (solvent streams only)”

Run Simulation

  1. Review all the inputs and run the simulation
  2. What is the concentration of H₂S in the vent stream to incineration?
  3. Is the concentration of H₂S maintained below 100 ppmv?

Results & Discussion


Vent to Incinerator

  1. The outlet concentration of H₂S to incinerator must meet the environmental regulations
  2. HS in the feed to incinerator is 20.52 ppmw

Something to think about


    • Related Articles

    • Impact of Transport Properties on CO₂ Absorption

      Instructions This article contains a series of steps to feed the data to the flowsheet, run the simulation, interpret the results User can either follow the series of steps mentioned in the article or download the ProTreat file attached to this ...
    • CO₂ Capture using an MEA System (Specifying wash section)

      Instructions This article contains a series of steps to feed the data to the flowsheet, run the simulation, interpret the results User can either follow the series of steps mentioned in the article or download the ProTreat file attached to this ...
    • Simulating Blended Amines

      Instructions This article contains a series of steps to feed the data to the flowsheet, run the simulation, interpret the results User can either follow the series of steps mentioned in the article or download the ProTreat file attached to this ...
    • Sour Water Stripping-(Two stage)

      Instructions This article contains a series of steps to feed the data to the flowsheet, run the simulation, interpret the results User can either follow the series of steps mentioned in the article or download the ProTreat file attached to this ...
    • Sour Water Stripping-(Single stage)

      Instructions This article contains a series of steps to feed the data to the flowsheet, run the simulation, interpret the results A user can either follow the series of steps mentioned in this article to build the flowsheet, or download the ProTreat ...